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Out of shear plane deformations in nematic liquid crystals 

by GRZEGORZ DERFEL 
Institute of Physics, Technical University of t od i ,  

ul Wolczanska 221, 93-005 todi ,  Poland 

(Received 26 June 1990; accepted 15 June 1991) 

The stability of the director field to deformations out of the plane of shear is 
examined by use of the Taylor expansion method based on catastrophe theory. For 
simple shear flow of nematics, the coming out of the shear plane is found for suitable 
surface alignment and not too high twist elastic constant. The role of these 
parameters is pointed out. Non-flow-aligning nematics are also considered, and 
results consistent with earlier reports are obtained. 

1. Introduction 
In recent papers [l, 23, the problem of the stability of the states induced by simple 

shear flow was considered. Non-flow-aligning nematics, with a negative a3/a2 ratio, 
were taken into account. In the present paper, the same problem is examined by means 
of the Taylor expansion method based on catastrophe theory. Attention is focused on 
the case of materials characterized by a3/a2 > 0, nevertheless the results for the opposite 
case are mentioned. In the previous paper [3], the same approach was applied to an 
analysis of the development of shear flow alignment, but director deformations were 
limited to the plane of shear. Numerical calculations [4] have been based on the same 
assumption. Here the director deviation from this plane is allowed and as a result the 
occurrence of coming out of the shear plane is found; the conditions for it are 
determined. 

The method applied here is presented in 6 2. In Q 3, the particular case is considered, 
in which the surface alignment angle 0, is - arctan Ja3/a2. In 0 4, the behaviour of the 
layer for arbitrary 8, and a3/a2 is described. Section 5 contains a short discussion of the 
results. 

2. Method 
The geometry of the system is shown in figure 1. For simple shear flow, a thin layer 

of nematic, characterized by Leslie coefficients ai and elastic constants kii, is confined 
between two parallel plates at a distance d apart, one at rest and the other moving 
under the influence of constant shear stress T. The stationary director distribution can 
be described by two angles, O(z) and 4(z). The director components are: 

n, = sin 4, ny = cos 4 cos 8, n, = cos #I sin 0. 

Identical strong anchoring is assumed on both boundary surfaces: 0( - 4 2 )  = O(d/2) 
= el, 4( - 4 2 )  = 4(d/2) = 0. The simplifying assumption a1 = 0 is used. 

In brief, the idea of the method adopted is as follows. The total free energy per unit 
area of the layer, G, is calculated. It is expressed as a function of the variables which 
measure the small director deviations from the initial state. This function is then 
expanded in a Taylor series and truncated according to rules given by catastrophe 
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648 G. Derfel 
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Figure 1. The geometry of the nematic layer in the simple shear flow. 

theory. By minimizing this reduced form, we obtain information on the equilibrium 
states of the system. For application in a dissipative system this procedure should be 
modified. Another function, which could play the role of the energy G, should be 
constructed. 

In the nematic layer under steady shear flow, the equilibrium director distribution 
results from the competition between the elastic and viscous torques, giving the 
resultant torque of zero. Any perturbation of this distribution requires some work to 
overcome the resulting torque, which tends to restore the previous equilibrium. As a 
result of this torque the system has the ability to do work at any perturbed state. 
Provided that both perturbation and relaxation are performed very slowly and along 
an identical path, they are related to the same (positive) value of the work (taken per 
unit volume): 

g= r - d Q ,  (1) s 
where dR is the elementary angular displacement vector, directed normal to the 
instantaneous plane of director rotation. Its minimum value, of zero, is due to the 
unperturbed state. Therefore it can be used to determine the equilibrium state of the 
system. 

The purpose of this paper is to investigate the stability of the system against a small 
departure of the director from the shear plane. The equilibrium orientation within the 
shear plane can be found by taking into account the work done during the change of the 
angle 0, when 4 is zero 
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Shear-Jiow deformations in nematics 649 

where re denotes the resulting torque if 6 has a non-equilibrium value. Since any 
constant added to g is not important in further considerations of the Taylor series, we 
can choose a convenient range of integration, namely: from 0 to 6. If the considered 
deviations from the shear plane are small, then they can be described by the variable 4 
and constant 6: 

where r+ denotes the torque tending to turn the director back to the shear plane. The 
work due to this departure has a minimum at 4 = 0 if the in-plane-of-shear state is 
stable. The sum of both work terms 

also has therefore a minimum. If the in-plane state is unstable, then the work go is 
negative and the sum does not have a minimum at 4 = 0. The total work can be divided 
into two parts: the elastic part can be expressed by the Frank free energy density 

+ cos2 4 cosz 6 - (3’ 

The viscous part is given by the integrals 

where 

ryz = ry sin 6 - Tz cos 6, (7) 

and I?,, r,, and Tz denote the components of the viscous torque vector. In the following, 
the angles 6 and 4 are expressed by means of two variables < and x. The function 

is expanded in a Taylor series and then integrated over z. In this way the total function 
G per unit area of the layer is obtained, it can then be used for further analysis. Some 
details of the calculations of g are given in the Appendix. 
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650 G. Derfel 

3. Critical surface orientation of flow-aligning nematics 
In this particular case, the flow alignment value is imposed on the surface 

orientation angle 

8, = - arctan J(a3/~2). (9) 

With no shear, the director is uniform across the gap: 8(z) = 8,. Small deformations of 
its distribution are assumed and they can be approximated by their first Fourier 
components: 

8(z) = 8, + { cos (nzld), 

+(z) = x cos (nzld).  

These formulae can be used to express the approximate form of the total work per unit 
area of the layer, G.  It represents the family of functions of two variables, { and 1, which 
is dependent on the geometrical and material constants and the shear stress. It can be 
expanded in a Taylor series in powers of 5 and x in the vicinity of 5=0 and x = O  

G = 1 1 aijtixj. (12) 
i j  

The coefficients aij, essential in further calculations, are given by: 

a,, =(2nk,,/d)t(scos2 8, -sin2 d,)/q, (13) 

a,, =o, (14) 

a2,=(n2k33/4d)[kscos28,+sin28, - t ( s +  l)(r-s)sin28,/q2], (15) 

a,, =o, (16) 

-tsin28,[s+ 1 +(1 -2/n)(2r-1)/(1cos28,+2psin28,)]/2q}, (17) 

- 2t[(s + l)(r - s)/q2] [cos 28, + (s + 1) sin’ 2e,lq]}, (18) 

+(2r--1)~(8,)/(lcos~ 8, +2psin2 el)]}, (19) 

a21 =o, (20) 

~ 0 3 ~ 0 .  (21) 

k ~ = ~ l l / ~ 3 3 ,  kl=k22/k33, s=a3/a2, 1=a4/a2, p=(a4+a5 -a2)/2a2 

ao2 =(n2k,,/4d){k, cos2 8, +sin2 8, 

a30 = (2nk3,/9d){ 1.5( 1 - ks) sin 28, 

a,2=(nk33/3d){(l -k,)sin28, -(2t/q)[(s+ l)cos28, +(s+ 1)’ sin2 28,/2q 

In these equations, the reduced quantities 

and 

r = (a, + a4 + a6)/2a2 

have been introduced, and 

q = r - ( s +  l)sin28,. 
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Shear-flow deformations in nematics 651 

The reduced stress is defined by 

where 

Z, = k3,n2/d ’. 
The function F(8,)  in a,, has the form: 

F(8,)=cos28, -2cos28,/~$sin28,/2 

It is evident, that coefficient a,, vanishes for 8, =arctanJs and 8, = -arctanJs. 
Together with a,, =0, this defines two critical points of G at 5 = 0 and x=O. Analysis of 
the second derivative matrix 

which has a diagonal form in this problem, determines the degeneracy of both of them. 
Namely the value 8, = arctan 4 s  gives the non-degenerate critical point (minimum), 
since det H=a2,a0, remains always positive. On the other hand, the angle 

8, = - ec = - arctan Js, (23) 
gives the degenerate critical point, because a2,uO2 can vanish for some sets of other 
parameters. In particular, there exist two values of the critical stress 

t , ,  = (k ,  + S)(S - r)/2Js( 1 + s), 

tc2=(k,+s)(s-r)(2ps+1)/2Js(l  +s)[r+ps-(2r-1)/n-J1, (25) 

k t = ( k s + s ) [ r + p s - ( 2 r - l ) / n ] / ( 2 p s + l ) - s =  k,, (26) 

t , ,  = t c2=t ,=(kC+s)(s -r ) (2ps+1) /2Js( l  +s)[r+ps-((2r--l)/n]. (27) 

(24) 

due to az0 = 0 and a,, = 0, respectively. Moreover, if 

then they coincide: 

By application of rules given in [S], we can prove, that the Taylor series (12) may be 
limited to third order. Therefore, the function G(8,b) is equivalent to its truncated 
expansion 

G = a , , ~ + ~ 2 , ~ 2 + a o z X 2 + a i 2 5 x 2 + a 3 , ~ 3 ,  (28) 

if only small deformations are considered and the parameters are not very different 
from their critical values given by equations (23), (26) and (27). By a suitable change of 
variables, this expression could be transformed into the standard form of the 
hyperbolic umbilic catastrophe [S]. It is, however, not necessary and later the 
untransformed form (28) will be used. The bifurcation set of the hyperbolic umbilic 
catastrophe divides the parameter space into four regions characterized by different 
numbers of extremes: (1) minimum, maximum and two saddle points; (2) minimum and 
one saddle point; (3) maximum and one saddle point; (4) no extremes. The continuous 
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652 G. Derfel 

I 

T 

Figure 2. Several possibilities of the Om@) dependence resulting from different relations between 
t,, and t c2 .  The circles on the ends of the lines denote coming out of the shear plane. Full 
line denotes minima and the dotted line denotes other extremes. 

Figure 3. Examples of the em@) dependence for the flow-aligning nematics. s-0.01, 
r =  -0.3, 1= -0.9, p =  -1.31, k , = l ;  (a) k,=0.4; (b) k,=0.6. The coming out of the shear 
plane takes place at the end of each full line. Dashed line denotes unavailable minima. 
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Figure 4. Examples of Om@) dependence for the non-flow-aligning nematic. s = -0.053, 
I =  -0396, 1= -0.99, p =  - 1.343, k,=1,  k,=0'65. 

change of the shear stress is accompanied with the move of the corresponding point in 
the parameter space. The physically interesting effect takes place when this point passes 
for the first time across the boundary between regions (1) and (2) or (1) and (3). This is 
related to the loss of stability of the initial uniform director distribution: the minimum 
at ( l = O ,  x = O )  is replaced by the maximum. This corresponds to the lower of the 
threshold stresses tCl and t c2 .  
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654 G. Derfel 

Two possible types of behaviour of the layer in the vicinity of the critical point can 
be distinguished. If tc2 < tcl ,  i.e. if 

k, < (k, + s)[r + ps - (2r - l)/n]/(2ps + I )  - s, (29) 
then the director loses its stability in the plane of shear. This suggests a discontinuous 
transition to a deformed state (c #O, x # 0), although this new equilibrium is not shown 
explicitly. If t,, < t c2 ,  then two situations may take place at tcl .  The destabilization, 
mentioned previously, of the in-plane director distribution occurs for not too large k, as 
can be seen in figure 3. For sufficiently high k,, the director does not deviate from its 
initial plane, and the state ((#O, x=O) is realized, as assumed in [3] and [4]. 

The behaviour of the system with 8, different from the critical value is described in 
the next section. 

4. Arbitrary surface alignment angles and non-flow-aligning nematics 
In the case of arbitrary surface alignment angles or of non-flow-aligning nematics, 

the critical point (5 =0, x =O), which is related to the uniform initial orientation 8(z) 
= 8,, disappears, since a, ,  #O. Other critical points can be found, which are due to the 
deformed director field. The director distribution in the plane of shear, 8,(z), can be 
obtained numerically; it is defined by the minimum of the function G. The small 
distorsions of this equilibrium state can be described by 

N.4 = x cos ( d d  1, (31) 

in analogy to equations (10) and (1 1). The coefficients of the Taylor expansion are now 
given by 

a,, = ( k n / d )  [ - Oz sin (nz/d) + (nt /d)[(s  cos’ 8, - sin2 8,)/q0] cos (nzld)] dz, (32) s 
a,, =o, (33) 

a,, =(kn2/4d)[1 -(2t/d)(s+ l)(r-s) (sin28,/qi)cos2 (nz/d)dz], (34) 

(35) a , ,  =o, 
s 

ao2 =(kn2 /4d)  s{(2/d)(sin2 8, + k, 60s’ 8,) sin2 (nzld) 

-(2d/n2)[ 1 + (1 - k,) sin’ dole,” cos’ (nzld)  

+(2/n)(1 -k,)sin 28,8,sin(nz/d)cos(nz/d) 

- ( t  sin 28,/q,d) 

x [s + 1 + (1 - 2/n)(2r - I)/(lcos’ 8, +2p sin’ 0,)] cos2 (nzld)} dz, (36) 

a30 = -(kn2/3d)t(s + l)(r-s) [cos 28,/qi +(s + 1) sin’ 28,/r& C O S ~  (nz/d) dz, (37) s 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Shear-flow deformations in nematics 655 

where 

a12=(k/d)(((d/2)(k,- l)sin2000~cos3(m/d) 

+ x( 1 + cos2 Oo + k,  sin2 Oo - k,)8, sin (m/d) cos2 (nz/d) 

-(7r2/2qod)t[(s + 1) cos 200 + (s + 1)2 sin2 200/2q0 

+ (2r - 1 )F(O,)/(l cos2 Oo + 2p sin2 O,)] c0s3 (m/d )) dz, (38) 

a21 =o, (39) 

a03 = 0, (40) 

6, = 8O0(z)/8z, ylo = r - (s + 1) sin2 Oo(z), 

and integration is performed from -d/2 to d/2. The function F(Oo) in a12 has the form 

F(Oo) = cos 28, - 2 cos2 O0ln + sin2 e0/2 

+(sin2 200/2)[3(s+ 1)/247+(1/71+4/7~-0-5)(2p-1)/(1~0~~ Oo+2psin2 OO)] .  

To simplify the computations, the equality k, = k,, = k is assumed, this enables us to 
use the relation [6] 

= 4 2 t )  eo - 8, + ~ r - s  [arctan (tan eo $) - arctan (tan 8, 
aZ { &-PI 

where 6,  is the midplane director orientation angle. All of the considerations made in 
the preceding section are valid. In consequence the hyperbolic umbilic catastrophe is 
also suitable for description of this generalized case. Since the deformation starts 
smoothly from t = 0, the critical stress t,, does not now play the role of any threshold. 
There can be zero or two t,, values in the flow-aligning nematics and an unlimited 
number if s < 0. They correspond to jumps between the deformed states which differ 
significantly in their elastic energy. For non-flow-aligning nematics, this effect is known 
as tumbling. The critical field t,, corresponds to coming out of the shear plane. The 
behaviour of the system is determined by the relation between tCl and the lowest value 
of tc2,. The possibilities are shown in figure 2, where Om is plotted schematically against 
t, some of them can be found in flow-aligning materials. 

The results of detailed calculations are presented in figures 3 and 4. They illustrate 
the role of 8, and k,  for the behaviour of the layer. In the flow-aligning materials, 
coming out of the shear plane can occur for a limited range of O1 values. This effect is 
possible also for k, which do not satisfy the inequality (29), however the range of O1 is 
especially narrow for high values of k,. If k, is too high, then the director remains in the 
plane of shear at any O1. There is no coming out for 0 < 6 ,  < 4 2 ,  and so for planar or 
homeotropic alignment also. If s<O, then coming out occurs for any 01, but for 
especially high k,, very strong deformation is required. 

5. Concluding remarks 
Summarizing, the stability of the director in the plane of shear during the simple 

shear flow was studied by use of a method based on catastrophe theory. It was found, 
that the effect of coming out of the shear plane occurred not only for the non-flow- 
aligning nematics, but for the flow-aligning materials as well. The results have a 
qualitative character, they can serve as a useful stimulous for accurate numerical 
investigations. 
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656 G. Derfel 

The umbilic catastrophe, which was applied here, gives no information about the 
deformed out-of-the-shear-plane state. This is a consequence of low order of the power 
expansion, which is sufficient only for a proper determination of the critical point and 
its close neighbourhood. In all the cases of coming out, the equilibrium state, in which 
the director lies in the shear plane, disappears abruptly. This suggests a discontinuous 
transition with hysteresis to a deformed state ( [ # O ,  x # O ) .  In the present work, the 
particular case is considered, in which the director is initially aligned parallel to the 
plane of shear. This leads to the incomplete (non-universal) form of the catastrophe [ S ] .  
The abrupt disappearance of the undeformed state results from this limitation. In the 
general case, when the critical alignment is not parallel to the shear plane, the director 
may come out smoothly starting from t = 0. Such a behaviour may be expected from the 
analogy with other transitions, for example, in an electric field [7]. 

Several approximations were adopted during the calculations and they are justified 
by the qualitative character of the method used. The threshold values of the shear stress 
are given by equations (24) and (25)  with an accuracy resulting from the unknown role 
of a, which was neglected. The O,(t) dependence is obtained with the additional 
approximation k ,  = k33 .  

The role of the geometric and material parameters is evident. If s > O ,  then the small 
values of k,  and moderate surface tilts are conducive to coming out of the shear plane. In 
agreement with earlier experiments and theoretical considerations, this effect occurs 
neither for homeotropic nor for planar alignment. In the case of non-flow-aligning 
nematics, the behaviour of the layer depends on the relation between t c ,  (if it exists) and 
t c2 .  This relation decides which effect takes place: tumbling or coming out of the shear 
plane. The latter effect seems to be unavoidable, although for high k,, rather strong 
deformations with large lO,l are required. The coming out of the shear plane occurs 
only if 0, takes negative values. These statements are consistent with results obtained 
by Zuniga and Leslie [1,2]. The results described in [3,4] are valid for materials with 
sufficiently high k,, since no possibility of coming out was taken into account there. 

Appendix 
Each component of the function g gives rise to aij coefficients and can be expanded 

separately in a Taylor series. The expansion of gelastic and its integration over z is 
straightforward. The calculations due to the viscous parts are more laborious, but some 
relations can be found, which simplify the procedure. 

The viscous parts of the function g can be expressed as (see equation (6)) 

gviscous = - jl r x l  do- j: r y z l  dd. (A 1) 
,$=O 0 = const 

The function 

j:rxl+=ode3 

does not depend on 4 and so its derivatives with respect to x vanish, and the Taylor 
series contains only the derivatives with respect to 5. They can be obtained easily by use 
of r,. Since the zero-degree term is not important, the integration is not necessary. The 
same argument applies to the function 

e = const 
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Shear-.ow deformations in nematics 657 

for any 8, it is equal to zero at 4=0. It means, that its derivatives with respect to t 
vanish. However there remain aTyz/ax and its higher derivatives with respect to < and x, 
and they give rise to the coefficients a,> 

The components of the viscous torques are: 

rx = - u cos2 4(a3 cos’ 8 - a2 sin’ 8) - wa3 sin 4 cos 4 cos 8, 

r,, = ua3 sin 4 cos 4 cos 8 + w(a3 sin2 C$ -a2 cos2 4 sin2 8), 

Tz = - ua2 sin 4 cos 4 sin 8 + wa2 cos‘ 4 sin 8 cos 8, 

22 = [aq + (a5 - a’) cos2 4 sin’ 8 + (a3 + a6) 60s’ 4 cos2 8]u 

(A 2) 

(A 3) 

(A 4) 

where u = av,/az and w = av,/az are given by the Navier-Stokes equations: 

+ (a3 + a6) sin 4 cos 4 cos Ow, (A 5 )  

+[a,+(a5-a2)cos2~sin’ e+(a3+a6)sin24]w, (A 6 )  

2~ = (a3 + a6) sin 4 cos 4 cos 8u 

in which a1 is neglected and a denotes the transverse shear stress. From this set of 
equations, u and w can be obtained, and then used to calculate ryz. For compact 
notation, equations (A 5) and (A 6 )  are rewritten as 

22 = PU + Qw, 

2 ~ =  QU + Rw. 

ryz = K u +  Jw= AT + Ba, 

(A 7 )  

(A 8) 

(A 9) 

Then 

where 

K = (a2 + a3) sin 4 cos 4 sin 8 cos 8, (A 10) 

J = sin 8 (a3 sin’ 4 - a2 cos’ 4), (A 11) 

A = 2 ( K R -  JQ)/A, (A 12) 
B=2(JP-  KQ)/A,  

A =  PR-Q’ .  

The angles 6 and 4 are given by equations (10) and (11) or (30) and (31). 
The transverse shear stress a is induced by the external shear stress T and results 

only if the director deviates from the plane of shear. Its value results from the condition 
related to the no-slip assumption for transverse flow 

wdz=O,  (A 15) I“:, 
which gives 
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658 Shear--ow deformations in nematics 

The integrals in this equation are calculated by use of the expansion of the integrands in 
a power series of ( and x. The expressions which include (T appear in the aij coefficients 
and are taken, in their final form, at the critical point 5 = 0, x = 0. Therefore only the first 
term of the integrated series gives rise to them: 

4 2  

["/2 (Q/4 dz I I=o  = = (Q/4 ( , = 0 [ - d / 2 ~ ~ = ~ '  <= (A 17) 

(A 18) 
4 2 

( P / 4  dz < = = ( P / 4  < = dz = d /R .  
("/2 / x = o  II;o ( -d /2  

This also applies to the derivatives of 0 with respect to ( and x, which are present in the 
expressions for the derivatives of ryz. For instance 

which leads to 

1 )  dz 
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